
READING FILES
f = open("my_file.txt","r")
file_as_string = f.read()

- Open the file my_file.txt and assign its
contents to s

import csv
f = open("my_dataset.csv","r")
csvreader = csv.reader(f)
csv_as_list = list(csvreader)

- Open the CSV file my_dataset.csv and assign its
data to the list of lists csv_as_list

STRINGS
s = "hello" - Assign the string "hello" to the

variable s
s = """She said,
"there's a good idea."
"""

- Assign a multi-line string to the variable s. Also
used to create strings that contain both " and '
characters

len(s) - Return the number of characters in s
s.startswith("hel") - Test whether s starts with

the substring "hel"
s.endswith("lo") - Test whether s ends with the

substring "lo"
"{} plus {} is {}".format(3,1,4) - Return the

string with the values 3, 1, and 4 inserted
s.replace("e","z") - Return a new string based

on s with all occurances of "e" replaced with "z"
s.split(" ") - Split the string s into a list of

strings, separating on the character " " and
return that list

NUMERIC TYPES AND
MATHEMATICAL OPERATIONS
i = int("5") - Convert the string "5" to the

integer 5 and assign the result to i
f = float("2.5") - Convert the string "2.5" to

the float value 2.5 and assign the result to f
5 + 5 - Addition
5 - 5 - Subtraction
10 / 2 - Division
5 * 2 - Multiplication

3 ** 2 - Raise 3 to the power of 2 (or 32)
27 ** (1/3) - The 3rd root of 27 (or 3√27)
x += 1 - Assign the value of x + 1 to x
x -= 1 - Assign the value of x - 1 to x

LISTS
l = [100,21,88,3] - Assign a list containing the

integers 100, 21, 88, and 3 to the variable l
l = list() - Create an empty list and assign the

result to l
l[0] - Return the first value in the list l
l[-1] - Return the last value in the list l
l[1:3] - Return a slice (list) containing the second

and third values of l
len(l) - Return the number of elements in l
sum(l) - Return the sum of the values of l
min(l) - Return the minimum value from l
max(l) - Return the maximum value from l
l.append(16) - Append the value 16 to the end of l
l.sort() - Sort the items in l in ascending order
" ".join(["A","B","C","D"]) - Converts the list

["A", "B", "C", "D"] into the string "A B C D"

DICTIONARIES
d = {"CA":"Canada","GB":"Great Britain",

"IN":"India"} - Create a dictionary with keys of
"CA", "GB", and "IN" and corresponding values
of of "Canada", "Great Britain", and "India"

d["GB"] - Return the value from the dictionary d
that has the key "GB"

d.get("AU","Sorry") - Return the value from the
dictionary d that has the key "AU", or the string
"Sorry" if the key "AU" is not found in d

d.keys() - Return a list of the keys from d
d.values() - Return a list of the values from d
d.items() - Return a list of (key, value) pairs

from d

MODULES AND FUNCTIONS
The body of a function is defined through

indentation.

import random - Import the module random
from math import sqrt - Import the function

sqrt from the module math

def calculate(addition_one,addition_two,

exponent=1,factor=1):

result = (value_one + value_two) ** exponent * factor

return result

- Define a new function calculate with two
required and two optional named arguments
which calculates and returns a result.

addition(3,5,factor=10) - Run the addition
function with the values 3 and 5 and the named
argument 10

BOOLEAN COMPARISONS
x == 5 - Test whether x is equal to 5
x != 5 - Test whether x is not equal to 5
x > 5 - Test whether x is greater than 5
x < 5 - Test whether x is less than 5
x >= 5 - Test whether x is greater than or equal to 5
x <= 5 - Test whether x is less than or equal to 5
x == 5 or name == "alfred" - Test whether x is

equal to 5 or name is equal to "alfred"
x == 5 and name == "alfred" - Test whether x is

equal to 5 and name is equal to "alfred"
5 in l - Checks whether the value 5 exists in the list l
"GB" in d - Checks whether the value "GB" exists in

the keys for d

IF STATEMENTS AND LOOPS
The body of if statements and loops are defined

through indentation.

if x > 5:

print("{} is greater than five".format(x))

elif x < 0:

print("{} is negative".format(x))

else:

print("{} is between zero and five".format(x))

- Test the value of the variable x and run the code
body based on the value

for value in l:
print(value)

- Iterate over each value in l, running the code in
the body of the loop with each iteration

while x < 10:
x += 1

- Run the code in the body of the loop until the
value of x is no longer less than 10

Data Science Cheat Sheet
Python Basics

LEARN DATA SCIENCE ONLINE
Start Learning For Free - www.dataquest.io

LEARN DATA SCIENCE ONLINE
Start Learning For Free - www.dataquest.io

BASICS, PRINTING AND GETTING HELP

type(x) - Return the type of the variable x (in this case, int for integer)

help(x) - Show documentation for the str data type
help(print) - Show documentation for the print() function

x = 3 - Assign 3 to the variable x
print(x) - Print the value of x

LISTS
l.pop(3) - Returns the fourth item from l and

deletes it from the list
l.remove(x) - Removes the first item in l that is

equal to x
l.reverse() - Reverses the order of the items in l
l[1::2] - Returns every second item from l,

commencing from the 1st item
l[-5:] - Returns the last 5 items from l specific axis

STRINGS
s.lower() - Returns a lowercase version of s
s.title() - Returns s with the first letter of every

word capitalized
"23".zfill(4) - Returns "0023" by left-filling the

string with 0’s to make it’s length 4.
s.splitlines() - Returns a list by splitting the

string on any newline characters.
Python strings share some common methods with lists

s[:5] - Returns the first 5 characters of s
"fri" + "end" - Returns "friend"
"end" in s - Returns True if the substring "end"

is found in s

RANGE
Range objects are useful for creating sequences of

integers for looping.

range(5) - Returns a sequence from 0 to 4
range(2000,2018) - Returns a sequence from 2000

to 2017
range(0,11,2) - Returns a sequence from 0 to 10,

with each item incrementing by 2
range(0,-10,-1) - Returns a sequence from 0 to -9
list(range(5)) - Returns a list from 0 to 4

DICTIONARIES
max(d, key=d.get) - Return the key that

corresponds to the largest value in d
min(d, key=d.get) - Return the key that

corresponds to the smallest value in d

SETS
my_set = set(l) - Return a set object containing

the unique values from l

len(my_set) - Returns the number of objects in
my_set (or, the number of unique values from l)

a in my_set - Returns True if the value a exists in
my_set

REGULAR EXPRESSIONS
import re - Import the Regular Expressions module
re.search("abc",s) - Returns a match object if

the regex "abc" is found in s, otherwise None
re.sub("abc","xyz",s) - Returns a string where

all instances matching regex "abc" are replaced
by "xyz"

LIST COMPREHENSION
A one-line expression of a for loop

[i ** 2 for i in range(10)] - Returns a list of
the squares of values from 0 to 9

[s.lower() for s in l_strings] - Returns the
list l_strings, with each item having had the
.lower() method applied

[i for i in l_floats if i < 0.5] - Returns
the items from l_floats that are less than 0.5

FUNCTIONS FOR LOOPING
for i, value in enumerate(l):

print("The value of item {} is {}".
format(i,value))

- Iterate over the list l, printing the index location
of each item and its value

for one, two in zip(l_one,l_two):
print("one: {}, two: {}".format(one,two))

- Iterate over two lists, l_one and l_two and print
each value

while x < 10:
x += 1

- Run the code in the body of the loop until the
value of x is no longer less than 10

DATETIME
import datetime as dt - Import the datetime

module
now = dt.datetime.now() - Assign datetime

object representing the current time to now
wks4 = dt.datetime.timedelta(weeks=4)

- Assign a timedelta object representing a
timespan of 4 weeks to wks4

now - wks4 - Return a datetime object
representing the time 4 weeks prior to now

newyear_2020 = dt.datetime(year=2020,
month=12, day=31) - Assign a datetime
object representing December 25, 2020 to
newyear_2020

newyear_2020.strftime("%A, %b %d, %Y")
- Returns "Thursday, Dec 31, 2020"

dt.datetime.strptime('Dec 31, 2020',"%b
%d, %Y") - Return a datetime object
representing December 31, 2020

RANDOM
import random - Import the random module
random.random() - Returns a random float

between 0.0 and 1.0
random.randint(0,10) - Returns a random

integer between 0 and 10
random.choice(l) - Returns a random item from

the list l

COUNTER
from collections import Counter - Import the

Counter class
c = Counter(l) - Assign a Counter (dict-like)

object with the counts of each unique item from
l, to c

c.most_common(3) - Return the 3 most common
items from l

TRY/EXCEPT
Catch and deal with Errors
l_ints = [1, 2, 3, "", 5] - Assign a list of

integers with one missing value to l_ints
l_floats = []
for i in l_ints:

try:
l_floats.append(float(i))

except:
l_floats.append(i)

- Convert each value of l_ints to a float, catching
and handling ValueError: could not convert
string to float: where values are missing.

Data Science Cheat Sheet
Python - Intermediate

KEY BASICS, PRINTING AND GETTING HELP
This cheat sheet assumes you are familiar with the content of our Python Basics Cheat Sheet

s - A Python string variable
i - A Python integer variable
f - A Python float variable

l - A Python list variable
d - A Python dictionary variable

LEARN DATA SCIENCE ONLINE
Start Learning For Free - www.dataquest.io

LEARN DATA SCIENCE ONLINE
Start Learning For Free - www.dataquest.io

http://www.dataquest.io
http://www.dataquest.io

